Synthesis and Anti-HIV-1 Activity of Bis-ketol AZT Monophosphates

Gerald F. Koser,* Yali Huang, Kuanchiang Chen and Kim C. Calvo* Department of Chemistry, The University of Akron, Akron, Ohio 44325, USA

The synthesis of five bis-ketol AZT monophosphates and their anti-HIV-1 activity in CEM-SS host cells are reported.

We report the synthesis of a series of bis-ketol AZT monophosphates, 1, representatives of a new sub-class of masked nucleotides.¹ These novel phosphotriesters have been evaluated at the National Cancer Institute (NCI) and are quite active against HIV-1 in human cells.²

The preparation of the first examples, 2, of tris-ketol phosphates *via* the 'exhaustive ketolization' of anhydrous H_3PO_4 with *p*-(difluoroiodo)toluene (DFIT, 4-MeC₆ H_4IF_2) and various silyl enol ethers (SEEs) in *tert*-butyl alcohol has recently been described.³ The synthesis of 1 was made possible by application of this methodology to anhydrous pyrophosphoric acid (PPA) and hydrolysis of the resulting tetrakis-ketol pyrophosphates, 3, to bis-ketol hydrogen phosphates, 4 [eqn. (1)]. Phosphorylation of AZT with 3 (R = Ph, Bu', 2-furyl) or 4 (R = C₆H₁₃, Me) affords the bis-ketol AZT monophosphates 1 [eqn. (2)].

More specifically, the tetrakis-ketol pyrophosphates were generated by the sequential treatment of PPA (Aldrich, 97%) with (1) a four-fold molar excess of (diacetoxyiodo)benzene (or DFIT for **3a**) and (2) an excess of the appropriate SEE in dry *tert*-butyl alcohol (room temp., N_2). They are sensitive to moisture and, once isolated, were generally employed without further purification. Compound **3a** (white solid) separated from the reaction medium, with or without added pentane, and was collected by filtration, while **3b** (white solid) was precipitated from the concentrated reaction mixture with pentane. Of the tetrakis-ketol pyrophosphates prepared, only **3a** and **3b** have been obtained in a near analytically pure state (C, H analyses consistent with **3a**-2H₂O and **3b**-H₂O). The crude tetrakis-ketol pyrophosphates **3d** and **3e**, isolated by vacuum evaporation of *tert*-butyl alcohol, were taken up in dichloromethane (10 cm³) and treated with water (*ca*. 0.1 and 0.2 cm³) whereupon they were converted into the bis-ketol hydrogen phosphates **4d** and **4e**. Conditions and yields for selected preparations of **3** and **4** are given in Table 1.

Compounds 3 and 4 can be readily distinguished by ¹H NMR analysis (300 MHz, CDCl₃). In particular, the methylene hydrogens of 4 afford a moderately lowfield doublet, while the diastereotopic methylene hydrogens of 3, unequally coupled with phosphorus, give rise to a complex multiplet best understood by simulation studies as the AB sub-spectrum of an ABXX' spin system (*i.e.*, the phosphorus atoms in 3 are isochronous but not isogamous). For example, the ¹H spectrum of 4b (made from 3b-H₂O) exhibits a doublet at δ 4.93 (J_{HP} 10 Hz). The spectrum of 3b-H₂O, on the other hand, shows a nearly symmetrical 15-line multiplet centred at δ 5.12.

The bis-ketol AZT monophosphates, 1a-c, were prepared by the condensation of AZT with 3a-c in the presence of triethylamine (room temp., CH_2Cl_2) and purified by column chromatography. For example, a mixture of AZT (1.0 mmol),

Table 1 Conditions and yields for selected preparations of tetrakis-ketol pyrophosphates and bis-ketol hydrogen phosphates

	Compd. ^a	Reactants (mmol)			** * * *			7 1 1
		PPA	Phl(OAc) ₂	SEE	Vol (cm ²) Bu ^t OH	Time (h)	Mp (°C)	solated yield (%)
	3a •2H ₂ O	5.0	20.0 (DFIT)	42	50	14.2	127-129ª	50
	3b-H-Ó	2.4	9.7	19	12	24	92-93	56 <i>°</i>
	3c	5.1	21.3	37	20	4	Oil	32 '
	4d	5.1	20.8	42	17	4	57–58 ⁴	25 9
	4e ^b	3.2	13.3	26	20	5	Oil	80 g

^a C,H (Calc: Found): **3a**-2H₂O (55.98, 4.7; 56.3, 5.1), **3b**-H₂O (48.98, 7.88; 49.3, 7.5), **4d** (54.84, 8.92; 55.1, 9.1). ^b Minor impurities by NMR, monoand tris-ketol phosphates among them. ^c Added volumetrically, mmol not corrected for impurities in SEE. ^d Mp and C,H analyses on samples from other preps. ^e PhI(OAc)₂ recovered (4.16 mmol), yield based on unrecovered PhI(OAc)₂. ^f Two fractions collected, yield based on first fraction (*ca.* 80 mass % pure) and corrected for purity. ^g Based on starting PPA.

Table 2 Conditions and yields for selected preparations of bis-ketol AZT monophosphates

	Reactants (mmol)				T 7 1 (3)			
Compd. ⁴	AZT	3 or 4	Et ₃ N	DCC	CH_2Cl_2	Time (h)	Mp (°C)	Isolated yield (%)
 la-H,O	1.0	1.2	1.3		22	7.33	61–63	72
1b ⁻	0.72	0.73	1.1 ^b		10	46	55-56.5	28
lc-H,O	1.0	1.6	1.5	2.3°	15	Overnight	59.5-61	85
1d -	1.0	2.8	2.1(5)	3.9	15	164	Oil	66
 1e	1.0	~4	3.6	6.1(5)	20	3.6 ^d	Syrup	71

^a C,H analyses within $\pm 0.29\%$, N analyses within $\pm 0.49\%$. Except for 1b, elemental analyses and mp on samples from other preps. ^b DMAP (23 mg) added after 22 h. ^c DCC added to convert any 4c present in the sample into product. ^d After Et₃N was introduced.

3a•2H₂O (1.2 mmol) and Et₃N (1.3 mmol) in CH₂Cl₂ (22 cm³) was stirred at room temperature for 7.33 h and then concentrated to afford a thick yellow oil. Chromatography of the oil on silica gel with hexanes–EtOAc gave a 'foamy' solid comprising **1a** and unchanged AZT (*ca.* 15 mol%). Extraction of this material (in CH₂Cl₂) with H₂O (*i.e.*, to remove AZT) gave **1a**•H₂O in 72% yield.

The bis-ketol AZT monophosphates 1d and 1e were prepared by the treatment of AZT-4d and AZT-4e mixtures first with dicyclohexylcarbodiimide (DCC) and then with triethylamine (room temp., CH_2Cl_2). For example, a mixture of AZT (1.0 mmol), 4d (2.8 mmol) and DCC (3.9 mmol) in CH_2Cl_2 (15 cm³) was stirred for 4 h at room temperature. Et₃N (2.15 mmol) was then introduced, and stirring was continued for 16 h (*i.e.*, no AZT left by TLC). A solid component was filtered off and the filtrate was concentrated. Chromatography of the residual material (silica gel, hexanes-EtOAc) gave a yellow oil identified as 1d (66% yield).

Yields and conditions for selected preparations of 1a-e are given in Table 2. All of these compounds have been characterized by IR, NMR (¹H, ¹³C, ³¹P) and elemental (CHN) analysis.

The bis-ketol AZT monophosphates were examined at the NCI for *in vitro* anti-HIV activity with susceptible T4

lymphocytes. Testing was done by the formazan assay method ⁴ on a CEM-SS host cell line infected with a cell-free preparation of HIV-1 (RF variant). With this system, AZT, the parent nucleoside, is reported ⁴ to exhibit an EC₅₀ of 5×10^{-8} mol dm⁻³ and an IC₅₀ > 1×10^{-3} mol dm⁻³ (Tl₅₀ > 2×10^{4}). The EC₅₀ values of **1a**-e, given in Table 3, were determined from plots of percent cellular protection versus log₁₀ [1] for eight concentrations (*i.e.*, ranging from 2.0×10^{-6} to 6.3×10^{-10} mol dm⁻³) of each masked nucleotide.[‡] The IC₅₀ values for uninfected cells were determined similarly (*i.e.*, for eight concentrations of each masked nucleotide ranging from 2.0×10^{-4} to 6.4×10^{-6} mol dm⁻³).

The bis-ketol AZT monophosphates show excellent anti-HIV-1 activity [EC₅₀'s from 8.0×10^{-9} to $< 6.3 \times 10^{-10}$ mol

[‡] Two preliminary anti-HIV assays for each bis-ketol AZT monophosphate, with the same set of concentrations employed for the IC₅₀ determinations, were also conducted. In 8 of 10 cases, the results were consistent with EC₅₀ values < 6.4×10^{-8} mol dm⁻³ (the lowest concentration of 1a-e tested). In one of the plots for 1d, the cellular protection corresponding to [1d] = 6.4×10^{-8} mol dm⁻³ fell below 50% (EC₅₀ = 9.8 × 10⁻⁸ mol dm⁻³). One of the plots for 1a·H₂O contains an obviously deviant point (slightly less than 50% protection) at log[1a-H₂O] = -5.7, but otherwise indicates an EC₅₀ value < 6.4×10^{-8} mol dm⁻³. The EC₅₀'s given in Table 3 are more reliable.

Table 3 Anti-HIV-1 activity of bis-ketol AZT monophosphates

 Compound	$IC_{50} (mol dm^{-3})^{a,b}$	EC ₅₀ (mol dm ⁻³) ^c	T1 ₅₀	
 1a·H ₂ O	1.1 × 10 ⁻⁴	7.3×10^{-9}	1.5×10^{4}	
		2.5×10^{-9}	4.4×10^{4}	
1b	$> 2.0 \times 10^{-4}$	8.0×10^{-9}	$> 2.5 \times 10^4$	
		1.1×10^{-9}	$> 1.8 \times 10^{5}$	
1c·H ₂ O	8.6×10^{-5}	4.5×10^{-9}	1.9×10^{4}	
2		1.7×10^{-9}	5.1×10^{4}	
1 d	$> 1.4 \times 10^{-4}$	1.8×10^{-9}	$>7.8 \times 10^4$	
		$< 6.3 \times 10^{-10}$	$> 2.2 \times 10^{5}$	
1e	$> 2.0 \times 10^{-4}$	5.4×10^{-9}	$> 3.7 \times 10^4$	
	·	$< 6.3 \times 10^{-10}$	$> 3.2 \times 10^5$	

^a The concentration of 1 at which 50% of uninfected cells are killed. This is related to the growth inhibitory properties of the compound. ^b Average of two determinations. The concentrations of 1 at which 50% of HIV-1 treated cells survive; i.e., the in vitro anti-HIV-1 activity of the compound.

dm⁻³], and, although they appear to be more cytotoxic than AZT, exhibit high therapeutic indices (ca. 10^4 to 10^5). The origin of their anti-HIV activity has not yet been ascertained. However, it seems plausible that intracellular hydrolytic unmasking of the bis-ketol nucleotides might generate AZT monophosphate, perhaps more efficiently than the enzymatic phosphorylation of AZT.⁵ This mode of action has been proposed in the literature for other nucleoside phosphotriesters.⁶

Acknowledgements

Financial support from the National Institutes of Health (Grant No. MCHA (AHR-A1) 1 R15 GM44177-01) is gratefully acknowledged.

References

1 Monoketol (i.e., acetoin) dinucleotides and related oligonucleotides are known: F. Ramirez and J. F. Marecek, Synthesis, 1985, 449. Benzoin-protected cAMP, a caged mono-ketol nucleotide, is also known: R. S. Givens, P. S. Athey, L. W. Kueper III, B. Matuszewski and J.-y. Xue, J. Am. Chem. Soc., 1992, 114, 8708; R. S. Givens, P. S. Athey, B. Matuszewski, L. W. Kueper III, J.-y. Xue and T. Fister, J. Am. Chem. Soc., 1993, 115, 6001.

- 2 Tested as part of the AIDS-antiviral screening program of the NCI. Results communicated by Dr. John P. Bader of the NCI. 3 G. F. Koser, K. Chen, Y. Huang and C. A. Summers, J. Chem. Soc.,
- Perkin Trans. 1, 1994, 1375.
- 4 O. S. Weislow, R. Kiser, D. L. Fine, J. Bader, R. H. Shoemaker and M. R. Boyd, J. Natl. Cancer Inst., 1989, 81, 577.
- 5 J. Balzarini, P. Herdewijn and E. De Clercq, J. Biol. Chem., 1989, 264, 6127.
- 6 (a) C. (a) C. McGuigan, C. Nickson, T. J. O'Connor and D. Kinchington, Antiviral Res., 1992, 17, 197; (b) C. McGuigan, R. N. Pathirana, N. Mahmood, K. G. Devine and A. J. Hay, Antiviral Res., 1992, 17, 311; (c) C. McGuigan, C. Nickson, J. Petrik and A. Karpas, FEBS Lett., 1992, **310**, 171; (d) C. McGuigan, D. Kinchington, S. R. Nicholls, C. Nickson and T. J. O'Connor, Biorg. Med. Chem. Lett., 1993, **3**, 1207; (e) Y. Henin, C. Gouyette, O. Schwartz, J.-C. Debouzy, J.-M. Neumann and T. Huynh-Dinh, J. Med. Chem., 1991, 34, 1830; (f) W. Thomson, D. Nicholls, W. J. Irwin, J. S. Al-Mushadani, S. Freeman, A. Karpas, J. Petrik, N. Mahmood and A. J. Hay, J. Chem. Soc., Perkin Trans. 1, 1993, 1239.

Paper 4/06101B Received 6th October 1994 Accepted 9th December 1994